The Plews on racing LCHF

Last week I detailed Kona Ironman age-group champion Dan Plews’ daily and training nutrition using a LCHF approach. How does this change in the lead up to an event, and what does he do on race day?

Like conventional sports nutrition principles, there is somewhat of a carbohydrate loading phase pre-race. This isn’t the 500-600g of carbohydrate that is recommended for most athletes in the three days before (which generally leaves an athlete feeling lethargic and bloated), however it is more than he would generally eat. Don’t forget that tapering for a race is, in effect, carbo loading, as the muscle glycogen stores are not depleted during training and it allows them the chance to be replenished and not in the deficit they normally are. Based on Rowlands paper which showed that a higher fat diet with a preload of carbohydrates, he’s dialled in his approach that Dan now feels works really well for him. He lifts his carbohydrate intake from the 80-100g he typically eats in the days prior. On the Wednesday (for a Saturday race), he will include additional potato or sweet potato in his evening meal, taking him to ~125g carbs per day. This increases to ~175g per day on Thursday and Friday (the two days before the race) – including fruit alongside the potato or sweet potato. In addition, he makes sure snacks etc on hand are low carbohydrate so  not to be caught out during the lead up period with having to rely on the petrol station or four square options. If you do have to rely on these, and are looking for lower carbohydrate, then biltong, cheese snacks, even lower carbohydrate protein bars can be good stop gaps. On race morning before Dan’s Kona race he opted for was porridge: oats with a bit of Super Starch added, which is a slow release carbohydrate to not inhibit fat burning, and is a higher molecular weight carbohydrate, so it is easier to digest.

During the race:

Despite research studies in this area using a ‘train low glycogen, race low glycogen’ model to determine the efficacy of a LCHF approach for sports performance, in practice Dan follows what practitioners advocate: a ‘train low, race high’ model. Ideally, the train low approach has enabled you to increase your efficiency to burn fat as a fuel source in addition to using carbohydrate that you have stored or take on board, thus maximising the amount of fuel you have available. Dan takes in around 50g carbohydrate per hour;  because he is very efficient at burning fat, he doesn’t need as much carbohydrate as he would otherwise. A real benefit of this is that it minimises the likelihood of gut issues many endurance athletes experience during a long event – the more carbohydrate fuel you have to take on board, the more opportunity there is to get the dose wrong. Importantly though, the more fatigued you become, the more your body will divert blood supply away from the gut to the muscles, and thus impacting on your ability to digest the fuel.  During Kona Dan used energy blocks with gels on the bike, and a couple of gels with some swigs of sports drink or coke during the run. His paper Different Horses on the Same Courses outlines how to take this individualistic approach to fuelling, as will his online course that you can sign up to by clicking here.

Finally, post-race, Dan gets back on board the LCHF approach fairly swiftly, as he has seen the impact that a higher carbohydrate fuelling day has on his blood glucose level across the course of the following week. It certainly doesn’t reduce down to normal levels the day after, and it’s likely that inflammation and muscle damage impacts on this too. Your best bet is to (as soon as possible) get back to your LCHF diet and help your recovery process.

LCHF for the top end:

Whilst LCHF is increasingly more accepted in the endurance space as part of the approach, what about at that top end – does it limit performance there? There is very little quality research on this, however Dan’s research group found that there was no detriment to perform high intensity intervals (as I blogged about here), but the jury is definitely out on this point and I wonder if, like many things, it is individual. A person’s ability to metabolise fat as a fuel source and use it at a higher intensity is trainable for sure (that’s what fat adaptation is all about), but there could be individuals who are less able to produce ketones to be used for energy – this is speculation though on my part. Yes, there is a down regulation in pyruvate dehydrogenase which helps turn stored carbohydrate into glucose for energy, however the importance of this is questionable given the increased availability of fat for fuel, and there may be other enzymes upregulated to counteract this change in the fuel use. A potential way around this issue (and to ensure glucose metabolism is continued on your LCHF approach) is to do higher intensity efforts in training that force liver to convert glycogen to glucose – thus keeping glucose oxidation pathways high. I’m also beginning to recommend that people take on a small amount of glucose pre-high intensity sessions if they are beginning the fat adaptation phase during a training cycle that incorporates higher intensity efforts. Ideally your fat adaptation phase will occur during base training when we can keep intensity low. But that isn’t always possible. Fifteen-20g glucose prior to training for these high intensity sessions can keep output high but is unlikely to be enough to “ruin” your adaptation process. Again, there is no research behind these numbers, but from a practice perspective I’ve seen this work well.

Finally, you know I’m an advocate of ketones to help support training whilst lower carbohydrate, and it certainly has helped me and many of my clients. We don’t at this point know enough about ketone utilisation in the body and whether taking exogenous ketones downregulates the body’s ability to produce them. This is an emerging field we are looking at with interest with regards to dosage, timing, type of ketone supplement etc. There has been decades of research into carbohydrate as a performance enhancer, and we can probably expect that it will take a few years of research for these questions to be answered in the science research space. Trying them yourself is likely the best approach to see how they impact your own performance (and I can help you with that).

1162_032201

Plews at Kona (PC http://www.trizone.com.au)

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s